Copied to
clipboard

G = C42.155D6order 192 = 26·3

155th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.155D6, C6.1342+ 1+4, C4⋊C4.113D6, C12⋊D434C2, C4⋊D1215C2, C42.C211S3, Dic35D438C2, C422S322C2, D6.D436C2, C2.59(D4○D12), (C2×C6).241C24, C12.131(C4○D4), (C4×C12).200C22, (C2×C12).189C23, D6⋊C4.112C22, C4.20(Q83S3), (C2×D12).166C22, C22.262(S3×C23), Dic3⋊C4.124C22, (C22×S3).106C23, C36(C22.34C24), (C4×Dic3).146C22, (C2×Dic3).261C23, C6.118(C2×C4○D4), (S3×C2×C4).131C22, C2.25(C2×Q83S3), (C3×C42.C2)⋊14C2, (C3×C4⋊C4).196C22, (C2×C4).594(C22×S3), SmallGroup(192,1256)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.155D6
C1C3C6C2×C6C22×S3S3×C2×C4D6.D4 — C42.155D6
C3C2×C6 — C42.155D6
C1C22C42.C2

Generators and relations for C42.155D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2, ab=ba, cac-1=ab2, dad-1=a-1b2, cbc-1=a2b, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 736 in 240 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C42.C2, C41D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C4×C12, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, C2×D12, C22.34C24, C422S3, C4⋊D12, Dic35D4, D6.D4, C12⋊D4, C3×C42.C2, C42.155D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, Q83S3, S3×C23, C22.34C24, C2×Q83S3, D4○D12, C42.155D6

Smallest permutation representation of C42.155D6
On 96 points
Generators in S96
(1 68 7 62)(2 76 8 82)(3 70 9 64)(4 78 10 84)(5 72 11 66)(6 80 12 74)(13 32 19 26)(14 51 20 57)(15 34 21 28)(16 53 22 59)(17 36 23 30)(18 55 24 49)(25 92 31 86)(27 94 33 88)(29 96 35 90)(37 63 43 69)(38 83 44 77)(39 65 45 71)(40 73 46 79)(41 67 47 61)(42 75 48 81)(50 87 56 93)(52 89 58 95)(54 91 60 85)
(1 34 42 52)(2 29 43 59)(3 36 44 54)(4 31 45 49)(5 26 46 56)(6 33 47 51)(7 28 48 58)(8 35 37 53)(9 30 38 60)(10 25 39 55)(11 32 40 50)(12 27 41 57)(13 79 93 72)(14 74 94 67)(15 81 95 62)(16 76 96 69)(17 83 85 64)(18 78 86 71)(19 73 87 66)(20 80 88 61)(21 75 89 68)(22 82 90 63)(23 77 91 70)(24 84 92 65)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 67 7 61)(2 72 8 66)(3 65 9 71)(4 70 10 64)(5 63 11 69)(6 68 12 62)(13 59 19 53)(14 52 20 58)(15 57 21 51)(16 50 22 56)(17 55 23 49)(18 60 24 54)(25 91 31 85)(26 96 32 90)(27 89 33 95)(28 94 34 88)(29 87 35 93)(30 92 36 86)(37 73 43 79)(38 78 44 84)(39 83 45 77)(40 76 46 82)(41 81 47 75)(42 74 48 80)

G:=sub<Sym(96)| (1,68,7,62)(2,76,8,82)(3,70,9,64)(4,78,10,84)(5,72,11,66)(6,80,12,74)(13,32,19,26)(14,51,20,57)(15,34,21,28)(16,53,22,59)(17,36,23,30)(18,55,24,49)(25,92,31,86)(27,94,33,88)(29,96,35,90)(37,63,43,69)(38,83,44,77)(39,65,45,71)(40,73,46,79)(41,67,47,61)(42,75,48,81)(50,87,56,93)(52,89,58,95)(54,91,60,85), (1,34,42,52)(2,29,43,59)(3,36,44,54)(4,31,45,49)(5,26,46,56)(6,33,47,51)(7,28,48,58)(8,35,37,53)(9,30,38,60)(10,25,39,55)(11,32,40,50)(12,27,41,57)(13,79,93,72)(14,74,94,67)(15,81,95,62)(16,76,96,69)(17,83,85,64)(18,78,86,71)(19,73,87,66)(20,80,88,61)(21,75,89,68)(22,82,90,63)(23,77,91,70)(24,84,92,65), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,67,7,61)(2,72,8,66)(3,65,9,71)(4,70,10,64)(5,63,11,69)(6,68,12,62)(13,59,19,53)(14,52,20,58)(15,57,21,51)(16,50,22,56)(17,55,23,49)(18,60,24,54)(25,91,31,85)(26,96,32,90)(27,89,33,95)(28,94,34,88)(29,87,35,93)(30,92,36,86)(37,73,43,79)(38,78,44,84)(39,83,45,77)(40,76,46,82)(41,81,47,75)(42,74,48,80)>;

G:=Group( (1,68,7,62)(2,76,8,82)(3,70,9,64)(4,78,10,84)(5,72,11,66)(6,80,12,74)(13,32,19,26)(14,51,20,57)(15,34,21,28)(16,53,22,59)(17,36,23,30)(18,55,24,49)(25,92,31,86)(27,94,33,88)(29,96,35,90)(37,63,43,69)(38,83,44,77)(39,65,45,71)(40,73,46,79)(41,67,47,61)(42,75,48,81)(50,87,56,93)(52,89,58,95)(54,91,60,85), (1,34,42,52)(2,29,43,59)(3,36,44,54)(4,31,45,49)(5,26,46,56)(6,33,47,51)(7,28,48,58)(8,35,37,53)(9,30,38,60)(10,25,39,55)(11,32,40,50)(12,27,41,57)(13,79,93,72)(14,74,94,67)(15,81,95,62)(16,76,96,69)(17,83,85,64)(18,78,86,71)(19,73,87,66)(20,80,88,61)(21,75,89,68)(22,82,90,63)(23,77,91,70)(24,84,92,65), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,67,7,61)(2,72,8,66)(3,65,9,71)(4,70,10,64)(5,63,11,69)(6,68,12,62)(13,59,19,53)(14,52,20,58)(15,57,21,51)(16,50,22,56)(17,55,23,49)(18,60,24,54)(25,91,31,85)(26,96,32,90)(27,89,33,95)(28,94,34,88)(29,87,35,93)(30,92,36,86)(37,73,43,79)(38,78,44,84)(39,83,45,77)(40,76,46,82)(41,81,47,75)(42,74,48,80) );

G=PermutationGroup([[(1,68,7,62),(2,76,8,82),(3,70,9,64),(4,78,10,84),(5,72,11,66),(6,80,12,74),(13,32,19,26),(14,51,20,57),(15,34,21,28),(16,53,22,59),(17,36,23,30),(18,55,24,49),(25,92,31,86),(27,94,33,88),(29,96,35,90),(37,63,43,69),(38,83,44,77),(39,65,45,71),(40,73,46,79),(41,67,47,61),(42,75,48,81),(50,87,56,93),(52,89,58,95),(54,91,60,85)], [(1,34,42,52),(2,29,43,59),(3,36,44,54),(4,31,45,49),(5,26,46,56),(6,33,47,51),(7,28,48,58),(8,35,37,53),(9,30,38,60),(10,25,39,55),(11,32,40,50),(12,27,41,57),(13,79,93,72),(14,74,94,67),(15,81,95,62),(16,76,96,69),(17,83,85,64),(18,78,86,71),(19,73,87,66),(20,80,88,61),(21,75,89,68),(22,82,90,63),(23,77,91,70),(24,84,92,65)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,67,7,61),(2,72,8,66),(3,65,9,71),(4,70,10,64),(5,63,11,69),(6,68,12,62),(13,59,19,53),(14,52,20,58),(15,57,21,51),(16,50,22,56),(17,55,23,49),(18,60,24,54),(25,91,31,85),(26,96,32,90),(27,89,33,95),(28,94,34,88),(29,87,35,93),(30,92,36,86),(37,73,43,79),(38,78,44,84),(39,83,45,77),(40,76,46,82),(41,81,47,75),(42,74,48,80)]])

36 conjugacy classes

class 1 2A2B2C2D···2H 3 4A4B4C···4H4I4J4K4L4M6A6B6C12A···12F12G12H12I12J
order12222···23444···44444466612···1212121212
size111112···122224···46666122224···48888

36 irreducible representations

dim11111112222444
type+++++++++++++
imageC1C2C2C2C2C2C2S3D6D6C4○D42+ 1+4Q83S3D4○D12
kernelC42.155D6C422S3C4⋊D12Dic35D4D6.D4C12⋊D4C3×C42.C2C42.C2C42C4⋊C4C12C6C4C2
# reps11124611164224

Matrix representation of C42.155D6 in GL8(𝔽13)

012000000
10000000
00100000
00010000
00000120
000012002
000010012
00000110
,
01000000
120000000
001200000
000120000
00000100
000012000
00000001
000000120
,
08000000
80000000
00110000
001200000
00000500
00008000
00005008
00000550
,
80000000
08000000
00110000
000120000
00005003
00000830
00000550
00005008

G:=sub<GL(8,GF(13))| [0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,1,0,0,0,0,2,0,0,1,0,0,0,0,0,2,12,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0],[0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,5,0,0,0,0,0,5,0,0,5,0,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,5,0,0,5,0,0,0,0,0,8,5,0,0,0,0,0,0,3,5,0,0,0,0,0,3,0,0,8] >;

C42.155D6 in GAP, Magma, Sage, TeX

C_4^2._{155}D_6
% in TeX

G:=Group("C4^2.155D6");
// GroupNames label

G:=SmallGroup(192,1256);
// by ID

G=gap.SmallGroup(192,1256);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,184,675,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽